conTEXT - Lightweight Text Analytics Using Linked Data
نویسندگان
چکیده
The Web democratized publishing – everybody can easily publish information on a Website, Blog, in social networks or microblogging systems. The more the amount of published information grows, the more important are technologies for accessing, analysing, summarising and visualising information. While substantial progress has been made in the last years in each of these areas individually, we argue, that only the intelligent combination of approaches will make this progress truly useful and leverage further synergies between techniques. In this paper we develop a text analytics architecture of participation, which allows ordinary people to use sophisticated NLP techniques for analysing and visualizing their content, be it a Blog, Twitter feed, Website or article collection. The architecture comprises interfaces for information access, natural language processing and visualization. Different exchangeable components can be plugged into this architecture, making it easy to tailor for individual needs. We evaluate the usefulness of our approach by comparing both the effectiveness and efficiency of end users within a task-solving setting. Moreover, we evaluate the usability of our approach using a questionnaire-driven approach. Both evaluations suggest that ordinary Web users are empowered to analyse their data and perform tasks, which were previously out of reach.
منابع مشابه
conTEXT - A Mashup Platform for Lightweight Text Analytics
Social media technologies such as Weblogs, Microblogging, Wikis and Social Networks have become one of the most important parts of our daily life as they enable us to communicate and share stories with a lot of people. The more the amount of published information grows, the more important are solutions for accessing, analyzing, summarizing and visualizing information. While substantial progress...
متن کاملText Analytics and Linked Data Management As-a-Service with S4
One of the limiting factors for the wider adoption of Semantic Technology at present is the complexity and cost of existing enterprise solutions for text analytics and Linked Data management. Startups and mid-size businesses often have only limited resources to evaluate and prototype with novel approaches for semantic data management. The Self-Service Semantic Suite (S4) provides an integrated ...
متن کاملBig Data Quality: From Content to Context
Over the last 20 years, and particularly with the advent of Big Data and analytics, the research area around Data and Information Quality (DIQ) is still a fast growing research area. There are many views and streams in DIQ research, generally aiming at improving the effectiveness of decision making in organizations. Although there are a lot of researches aimed at clarifying the role of BIG data...
متن کاملOn-demand Text Analytics and Metadata Management with S4
Semantic technologies provide a new, promising approach for smart data management and analytics. At the same time, the adoption of an emerging technology is usually limited by factors such as its perceived complexity, cost and performance. Startups and mid-size businesses often have very limited resources to evaluate and prototype with emerging technologies, even if their potential for more eff...
متن کاملLinguistically Light Lexical Extensions for Ontologies
An increasing number of enterprises are beginning to include semantic web ontologies into their Information Extraction (IE) and Text Analytics (TA) applications. This can be challenging for a TA group wishing to avail of semantic web ontologies due to the manual effort of retargeting and tailoring language resources within the TA system to a new domain to meet customer needs. A lightweight lexi...
متن کامل